ENVIRONNEMENT DE RECETTE

Préparation au Bac - Spécialité

Préparation au Bac 2024

Exercice 1 : Bac Spécialité 2021 Métropole - Exercice 1 - Probabilités

Dans une école de statistique, après étude des dossiers des candidats, le recrutement se fait de deux façons :

  • • \( 10 \)% des candidats sont sélectionnés sur dossier. Ces candidats doivent ensuite passer un oral à l’issue duquel \( 50 \)% d’entre eux sont finalement admis à l’école.
  • • Les candidats n’ayant pas été sélectionnés sur dossier passent une épreuve écrite à l’issue de laquelle \( 30 \) % d’entre eux sont admis à l’école.

Partie 1 : Arbre et calcul de probabilités

On choisit au hasard un candidat à ce concours de recrutement. On notera :

  • • \( D \) l’évènement « le candidat a été sélectionné sur dossier » ;
  • • \( A \) l’évènement « le candidat a été admis à l’école » ;
  • • \( \overline{D} \) et \( \overline{A} \) les évènements contraires des évènements \( D \) et \( A \) respectivement.
1. Compléter l'arbre ci-dessous :
On donnera les résultats arrondis au centième près.
{"D": {"A": {"value": " "}, "\\overline{A}": {"value": " "}, "value": " "}, "\\overline{D}": {"A": {"value": " "}, "\\overline{A}": {"value": " "}, "value": " "}}
2. Calculer la probabilité que le candidat soit sélectionné sur dossier et admis à l’école.
3. Calculer la probabilité de l'évènement \( A \).
4. On choisit au hasard un candidat admis à l’école. Quelle est la probabilité que son dossier n’ait pas été sélectionné ?
On arrondira le résultat au centième près.

Partie 2 : Variable aléatoire

Dans une autre école, la probabilité pour un candidat d’être admis à l’école est égale à \( 0,42 \). On considère un échantillon de huit candidats choisis au hasard, en assimilant ce choix à un tirage au sort avec remise. On désigne par \( X \) la variable aléatoire dénombrant les candidats admis à l’école parmi les huit tirés au sort. On admet que la variable aléatoire \( X \) suit une loi binomiale.

1. a. Quel est le paramètre \( n \) de cette loi ?
1. b Calculer la probabilité que deux des huit candidats tirés au sort soient admis à l’école.
On donnera une réponse arrondie au centième.
1. c Calculer la probabilité qu’au moins quatre des huit candidats tirés au sort soient admis à cette école.
On donnera une réponse arrondie au centième.

Un lycée présente \( n \) candidats au recrutement dans cette école, où \( n \) est un entier naturel non nul.
On admet que la probabilité pour un candidat quelconque du lycée d’être admis à l’école est égale à \( 0,42 \) et que les résultats des candidats sont indépendants les uns des autres.

2. a Donner l’expression, en fonction de \( n \), de la probabilité qu’aucun candidat issu de ce lycée ne soit admis à l’école.
2. b À partir de quelle valeur de l’entier \( n \) la probabilité qu’au moins un élève de ce lycée soit admis à l’école est-elle supérieure ou égale à \( 0,999 \) ?

Exercice 2 : Bac 2023 (Amérique du Sud) – Exercice 1 : Étude de fonctions

Partie A

On considère la fonction \(f\) définie sur l'ensemble \([0; +\infty[ \) par \[f(x) = 2 + 2x^{2} -4x^{2}\operatorname{ln}\left(\dfrac{1}{2}x\right) \]
On admet que \(f\) est dérivable sur l'intervalle et on note \(f'\) sa fonction dérivée.

1. a Que vaut \( \lim_{x\to 0} x^{2}\operatorname{ln}\left(\dfrac{1}{2}x\right) \) ?
1. b En déduire \( \lim_{x\to 0} f(x) \).
1. c En remarquant que \( f(x) = 2 + 2x^{2}\left(1 -2\operatorname{ln}\left(\dfrac{1}{2}x\right)\right) \), déterminer \( \lim_{x\to + \infty} f(x)\).
2. Déterminer, pour tout réel \(x\) de l'intervalle \( ]0; +\infty[\), \(f'(x)\), l'expression de la fonction dérivée de \(f\).
On donnera directement \(f'(x)\)
3. Compléter le tableau de variations de \(f\) sur l'intervalle \(]0; + \infty[ \).

Essais restants : 2

4. Compléter la démonstration suivante montrant que l'équation \(f(x) = 0 \) admet une unique solution \(\alpha\) dans l'intervalle \([2; +\infty[\) et que \(\alpha \in [2; 2e]\)
La fonction \(f\) est continue car et \(f\) est sur l'intervalle \([2;+ \infty[\). 0 est compris entre \( f(2) = \) et \( \lim_{x\to + \infty} f(x) = \) . D'après le théorème , il existe un réel \(\alpha\), avec \(\alpha \in ]2;+\infty [ \) tel que \( f(\alpha) = \) . En appliquant le même théorème sur l'intervalle \([2;\) \(]\), on a bien compris entre \(f(2) = \) et \(f(2e) = 2 - 2e^{2} = \). D'où \( 1< \alpha < 2e\)

On admet dans la suite de l'exercice, que l'équation \( f(x) = 0 \) n'admet pas de solution sur l'intervalle \(]0;2]\).

5. On donne la fonction ci-dessous écrite en Python. L'instruction from lycee import * permet d'accèder à la fonction ln.
from lycee import *

def f(x):
    return 2 + 2 * x ** 2 - 4 * x ** 2 * ln(1/2 * x)

def dichotomie(p):
    a = 2
    b = 2.7 / 0.5
    while b - a > 10 ** (-p):
        if f(a) * f((a + b) / 2) < 0:
            b = (a + b) / 2
        else:
            a = (a + b) / 2
    return (a, b)
On écrit dans la console d'exécution :
>>> dichotomie(1)
Parmi les quatre propositions ci-dessous, déterminer celle affichée par l'instruction précédente.

Partie B

On considère la fonction \(g\) définie sur l'intervalle \(]0; +\infty[\), par \(g(x) = \dfrac{\operatorname{ln}\left(\dfrac{1}{2}x\right)}{2 + 2x^{2}}\) . On admet que \(g\) est dérivable sur l'intervalle \(]0; +\infty[\) et on note \(g'\) sa fonction dérivée. On note \(C_{g}\) la courbe représentative de la fonction \(g\) dans le plan rapporté à un repère \((O;\vec{i},\vec{j})\).

1. Déterminer, pour tout réel \(x\) de l'intervalle \(]0; +\infty[\), \(g'(x)\), l'expression de la fonction dérivée de \(g\).
2. Compléter la démonstration montrant que la fonction \(g\) admet un maximum en \(x = \alpha\).
\(g'\) peut être mise sous la forme \( \dfrac{f(x)}{4x\left(1 + x^{2}\right)^{2}} \). Puisque \(x > 0 \) et \( (2 + 2x^{2})^2 \) \(0\), le signe de \(g'(x)\) est celui du numérateur donc le signe de . Or on a vu (Partie A question 3.) que \(f(x)\) \(0 \) sur \(]0;\alpha[ \) et \(f(x)\) \(0\) sur \(]\alpha; + \infty[ \). La fonction \(g\) est donc sur \([0; \alpha]\), puis sur \([\alpha; + \infty[\) avec un \(g(\alpha)\).

On admet que \(g(\alpha) = \)\(\dfrac{1}{4\alpha^2}\)

3. On note \(T_{2}\) la tangente à \(C_{g}\) au point d'abscisse 2 et on note \(T_{\alpha}\) la tangente à \(C_{g}\) au point d'abscisse \(\alpha\). Déterminer, en fonction de \(\alpha\), les coordonnées du point d'intersection des droites \(T_{2}\) et \(T_{\alpha}\).

Exercice 3 : Bac Spécialité 2022 Mayotte Liban - Exercice 2 - QCM suites, fonctions et fonctions logarithmes

Un récipient contenant initialement \( 8 \) litres d’eau est laissé au soleil.
Toutes les heures, le volume d’eau diminue de \( 10 \) %.

Au bout de quel nombre entier d’heures le volume d’eau devient-il inférieur à un quart de litre ?

On considère la suite \( (u_{n}) \) définie pour tout entier naturel \( n \) par : \[ \left\{\begin{matrix} u_{n+1} = 3 + \dfrac{1}{9}u_n \\ u_{0} = -5 \end{matrix}\right. \]

On peut affirmer que :

On considère la fonction \( f \) définie sur l'intervalle \( ]0;+\infty[ \) par : \[ f(x) = 3ln(6x) \]

Pour tout réel \( x \) de l'intervalle \( ]0;+\infty[ \), on a :

On considère la fonction \( g \) définie sur l'intervalle \( ] \dfrac{1}{4};+\infty[ \) par : \[ g(x) = \dfrac{ln(4x)}{4x - 1} \]
On note \( C_g \) la courbe représentative de la fonction \( g \) dans un repère orthogonal.

La courbe \( C_g \) admet :

Dans la suite de l'exercice, on considère la fonction \( h \) définie sur l'intervalle \( ]0;2] \) par : \[ h(x) = 2x^{2}(1+2ln(x)) \]
On note \( C_h \) la courbe représentative de \( h \) dans un repère du plan.
On admet que \( h \) est deux fois dérivables sur l'intervalle \( ]0;2] \).
On note \( h' \) sa dérivée et \( h'' \) sa dérivée seconde.
On admet que, pour tout réel \( x \) de l'intervalle \( ]0;2] \), on a : \[ h'(x) = 8x(1+ln(x)) \]

Sur l'intervalle \( [\dfrac{1}{e};2] \), la fonction \( h \) s'annule :
Une équation de la tangente à \( C_h \) au point d'abscisse \( \sqrt{e} \) est :
Sur l'intervalle \( ]0;2] \), le nombre de points d'inflexion de la courbe \( C_h \) est égal à :

Exercice 4 : Bac Spécialité 2022 Amérique du Nord - Exercice 3 - Géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé \((O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})\) d’unité \(1\) \(\text{cm}\), on considère les points suivants : \(J(4; -4; 0)\), \(K(0; 4; 0)\), \(L(-44; -28; -36)\)

Donner la ou les caractéristiques correctes pour le triangle \(JKL\).
Donner une valeur approchée de l’aire du triangle \(JKL\).

On donnera le résultat en \(\text{cm}^{2}\) et arrondi à \(0,01\) \(\text{cm}^{2}\) près.
Déterminer une valeur approchée au dixième de degré près de l’angle géométrique \(\widehat{JKL}\).
Sélectionner le ou les vecteurs normaux au plan \((JKL)\).
En déduire une équation cartésienne du plan \((JKL)\).

Dans la suite, \(T\) désigne le point de coordonnées \((0; -11; -10)\).

Lequel de ces systèmes d'équations paramétriques est une représentation paramétrique de la droite \( \Delta \), orthogonale au plan \(JKL\) et passant par \(T\) ?
Déterminer les coordonnées du point \(H\), projeté orthogonal du point \(T\) sur le plan \(JKL\).

On séparera les coordonnées avec un point-virgule.
Voici un exemple de réponse attendue : \((1;2;-1)\)

On rappelle que le volume \(V\) d’un tétraèdre est donné par la formule :

\(V = \frac{1}{3} B \times h\) où \(B\) désigne l’aire d’une base et \(h\) la hauteur correspondante.

Donner une valeur approchée du volume du tétraèdre \(JKLT\) en \(\text{cm}^{3}\).

On donnera le résultat arrondi à \(0,001\) \(\text{cm}^{3}\) près.

Exercice 5 : Bac Spécialité 2021 Métropole - Exercice 1 - Probabilités

Dans une école de statistique, après étude des dossiers des candidats, le recrutement se fait de deux façons :

  • • \( 15 \)% des candidats sont sélectionnés sur dossier. Ces candidats doivent ensuite passer un oral à l’issue duquel \( 70 \)% d’entre eux sont finalement admis à l’école.
  • • Les candidats n’ayant pas été sélectionnés sur dossier passent une épreuve écrite à l’issue de laquelle \( 60 \) % d’entre eux sont admis à l’école.

Partie 1 : Arbre et calcul de probabilités

On choisit au hasard un candidat à ce concours de recrutement. On notera :

  • • \( D \) l’évènement « le candidat a été sélectionné sur dossier » ;
  • • \( A \) l’évènement « le candidat a été admis à l’école » ;
  • • \( \overline{D} \) et \( \overline{A} \) les évènements contraires des évènements \( D \) et \( A \) respectivement.
1. Compléter l'arbre ci-dessous :
On donnera les résultats arrondis au centième près.
{"D": {"A": {"value": " "}, "\\overline{A}": {"value": " "}, "value": " "}, "\\overline{D}": {"A": {"value": " "}, "\\overline{A}": {"value": " "}, "value": " "}}
2. Calculer la probabilité que le candidat soit sélectionné sur dossier et admis à l’école.
3. Calculer la probabilité de l'évènement \( A \).
4. On choisit au hasard un candidat admis à l’école. Quelle est la probabilité que son dossier n’ait pas été sélectionné ?
On arrondira le résultat au centième près.

Partie 2 : Variable aléatoire

Dans une autre école, la probabilité pour un candidat d’être admis à l’école est égale à \( 0,45 \). On considère un échantillon de quatorze candidats choisis au hasard, en assimilant ce choix à un tirage au sort avec remise. On désigne par \( X \) la variable aléatoire dénombrant les candidats admis à l’école parmi les quatorze tirés au sort. On admet que la variable aléatoire \( X \) suit une loi binomiale.

1. a. Quel est le paramètre \( p \) de cette loi ?
1. b Calculer la probabilité que deux des quatorze candidats tirés au sort soient admis à l’école.
On donnera une réponse arrondie au centième.
1. c Calculer la probabilité qu’au plus quatre des quatorze candidats tirés au sort soient admis à cette école.
On donnera une réponse arrondie au centième.

Un lycée présente \( n \) candidats au recrutement dans cette école, où \( n \) est un entier naturel non nul.
On admet que la probabilité pour un candidat quelconque du lycée d’être admis à l’école est égale à \( 0,45 \) et que les résultats des candidats sont indépendants les uns des autres.

2. a Donner l’expression, en fonction de \( n \), de la probabilité qu’aucun candidat issu de ce lycée ne soit admis à l’école.
2. b À partir de quelle valeur de l’entier \( n \) la probabilité qu’au moins un élève de ce lycée soit admis à l’école est-elle supérieure ou égale à \( 0,99 \) ?
False